src/math/random_generator.cpp

Go to the documentation of this file.
00001 // $Id: random_generator.cpp 6382 2010-02-21 23:18:32Z mathnerd314 $
00002 //
00003 // A strong random number generator
00004 //
00005 // Copyright (C) 2006 Allen King
00006 // Copyright (C) 2002 Michael Ringgaard. All rights reserved.
00007 // Copyright (C) 1983, 1993 The Regents of the University of California.
00008 //
00009 // Redistribution and use in source and binary forms, with or without
00010 // modification, are permitted provided that the following conditions
00011 // are met:
00012 //
00013 // 1. Redistributions of source code must retain the above copyright
00014 //    notice, this list of conditions and the following disclaimer.
00015 // 2. Redistributions in binary form must reproduce the above copyright
00016 //    notice, this list of conditions and the following disclaimer in the
00017 //    documentation and/or other materials provided with the distribution.
00018 // 3. Neither the name of the project nor the names of its contributors
00019 //    may be used to endorse or promote products derived from this software
00020 //    without specific prior written permission.
00021 //
00022 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
00023 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00024 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00025 // ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
00026 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
00027 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
00028 // OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00029 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00030 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
00031 // OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
00032 // SUCH DAMAGE.
00033 
00034 // Transliterated into C++ Allen King 060417, from sources on
00035 //          http://www.jbox.dk/sanos/source/lib/random.c.html
00036 
00037 #include <assert.h>
00038 #include <stdexcept>
00039 #include <stdio.h>
00040 #include <time.h>
00041 
00042 #include "math/random_generator.hpp"
00043 
00044 RandomGenerator graphicsRandom;               // graphic RNG
00045 RandomGenerator gameRandom;                   // game RNG
00046 
00047 RandomGenerator::RandomGenerator() :
00048   initialized(),
00049   fptr(),
00050   rptr(),
00051   state(),
00052   rand_type(),
00053   rand_deg(),
00054   rand_sep(),
00055   end_ptr(),
00056   debug()
00057 {
00058   assert(sizeof(int) >= 4);
00059   initialized = 0;
00060   debug = 0;                              // change this by hand for debug
00061   initialize();
00062 }
00063 
00064 RandomGenerator::~RandomGenerator() {
00065 }
00066 
00067 int RandomGenerator::srand(int x)    {
00068   int x0 = x;
00069   while (x <= 0)                          // random seed of zero means
00070     x = time(0) % RandomGenerator::rand_max; // randomize with time
00071 
00072   if (debug > 0)
00073     printf("==== srand(%10d) (%10d) rand_max=%x =====\n",
00074            x, x0, RandomGenerator::rand_max);
00075 
00076   RandomGenerator::srandom(x);
00077   return x;                               // let caller know seed used
00078 }
00079 
00080 int RandomGenerator::rand() {
00081   int rv;                                  // a positive int
00082   while ((rv = RandomGenerator::random()) <= 0) // neg or zero causes probs
00083     ;
00084   if (debug > 0)
00085     printf("==== rand(): %10d =====\n", rv);
00086   return rv;
00087 }
00088 
00089 int RandomGenerator::rand(int v) {
00090   assert(v >= 0 && v <= RandomGenerator::rand_max); // illegal arg
00091 
00092   // remove biases, esp. when v is large (e.g. v == (rand_max/4)*3;)
00093   int rv, maxV =(RandomGenerator::rand_max / v) * v;
00094   assert(maxV <= RandomGenerator::rand_max);
00095   while ((rv = RandomGenerator::random()) >= maxV)
00096     ;
00097   return rv % v;                          // mod it down to 0..(maxV-1)
00098 }
00099 
00100 int RandomGenerator::rand(int u, int v) {
00101   assert(v > u);
00102   return u + RandomGenerator::rand(v-u);
00103 }
00104 
00105 double RandomGenerator::randf(double v) {
00106   float rv;
00107   do {
00108     rv = ((double)RandomGenerator::random())/RandomGenerator::rand_max * v;
00109   } while (rv >= v);                      // rounding might cause rv==v
00110 
00111   if (debug > 0)
00112     printf("==== rand(): %f =====\n", rv);
00113   return rv;
00114 }
00115 
00116 double RandomGenerator::randf(double u, double v) {
00117   return u + RandomGenerator::randf(v-u);
00118 }
00119 
00120 //-----------------------------------------------------------------------
00121 //
00122 // Copyright (C) 2002 Michael Ringgaard. All rights reserved.
00123 // Copyright (C) 1983, 1993 The Regents of the University of California.
00124 //
00125 // Redistribution and use in source and binary forms, with or without
00126 // modification, are permitted provided that the following conditions
00127 // are met:
00128 //
00129 // 1. Redistributions of source code must retain the above copyright
00130 //    notice, this list of conditions and the following disclaimer.
00131 // 2. Redistributions in binary form must reproduce the above copyright
00132 //    notice, this list of conditions and the following disclaimer in the
00133 //    documentation and/or other materials provided with the distribution.
00134 // 3. Neither the name of the project nor the names of its contributors
00135 //    may be used to endorse or promote products derived from this software
00136 //    without specific prior written permission.
00137 //
00138 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
00139 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00140 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00141 // ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
00142 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
00143 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
00144 // OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00145 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00146 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
00147 // OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
00148 // SUCH DAMAGE.
00149 //
00150 
00151 //**#include <os.h>
00152 
00153 //
00154 // An improved random number generation package.  In addition to the standard
00155 // rand()/srand() like interface, this package also has a special state info
00156 // interface.  The initstate() routine is called with a seed, an array of
00157 // bytes, and a count of how many bytes are being passed in; this array is
00158 // then initialized to contain information for random number generation with
00159 // that much state information.  Good sizes for the amount of state
00160 // information are 32, 64, 128, and 256 bytes.  The state can be switched by
00161 // calling the setstate() routine with the same array as was initialized
00162 // with initstate().  By default, the package runs with 128 bytes of state
00163 // information and generates far better random numbers than a linear
00164 // congruential generator.  If the amount of state information is less than
00165 // 32 bytes, a simple linear congruential R.N.G. is used.
00166 //
00167 // Internally, the state information is treated as an array of longs; the
00168 // zeroeth element of the array is the type of R.N.G. being used (small
00169 // integer); the remainder of the array is the state information for the
00170 // R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
00171 // state information, which will allow a degree seven polynomial.  (Note:
00172 // the zeroeth word of state information also has some other information
00173 // stored in it -- see setstate() for details).
00174 //
00175 // The random number generation technique is a linear feedback shift register
00176 // approach, employing trinomials (since there are fewer terms to sum up that
00177 // way).  In this approach, the least significant bit of all the numbers in
00178 // the state table will act as a linear feedback shift register, and will
00179 // have period 2^deg - 1 (where deg is the degree of the polynomial being
00180 // used, assuming that the polynomial is irreducible and primitive).  The
00181 // higher order bits will have longer periods, since their values are also
00182 // influenced by pseudo-random carries out of the lower bits.  The total
00183 // period of the generator is approximately deg*(2**deg - 1); thus doubling
00184 // the amount of state information has a vast influence on the period of the
00185 // generator.  Note: the deg*(2**deg - 1) is an approximation only good for
00186 // large deg, when the period of the shift is the dominant factor.
00187 // With deg equal to seven, the period is actually much longer than the
00188 // 7*(2**7 - 1) predicted by this formula.
00189 //
00190 // Modified 28 December 1994 by Jacob S. Rosenberg.
00191 //
00192 
00193 //
00194 // For each of the currently supported random number generators, we have a
00195 // break value on the amount of state information (you need at least this
00196 // many bytes of state info to support this random number generator), a degree
00197 // for the polynomial (actually a trinomial) that the R.N.G. is based on, and
00198 // the separation between the two lower order coefficients of the trinomial.
00199 
00200 void RandomGenerator::initialize() {
00201 
00202 #define NSHUFF 100      // To drop part of seed -> 1st value correlation
00203 
00204   //static long degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
00205   //static long seps [MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
00206 
00207   degrees[0] = DEG_0;
00208   degrees[1] = DEG_1;
00209   degrees[2] = DEG_2;
00210   degrees[3] = DEG_3;
00211   degrees[4] = DEG_4;
00212 
00213   seps [0] = SEP_0;
00214   seps [1] = SEP_1;
00215   seps [2] = SEP_2;
00216   seps [3] = SEP_3;
00217   seps [4] = SEP_4;
00218 
00219   //
00220   // Initially, everything is set up as if from:
00221   //
00222   //  initstate(1, randtbl, 128);
00223   //
00224   // Note that this initialization takes advantage of the fact that srandom()
00225   // advances the front and rear pointers 10*rand_deg times, and hence the
00226   // rear pointer which starts at 0 will also end up at zero; thus the zeroeth
00227   // element of the state information, which contains info about the current
00228   // position of the rear pointer is just
00229   //
00230   //  MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
00231 
00232   randtbl[ 0] =  TYPE_3;
00233   randtbl[ 1] =  0x991539b1;
00234   randtbl[ 2] =  0x16a5bce3;
00235   randtbl[ 3] =  0x6774a4cd;
00236   randtbl[ 4] =  0x3e01511e;
00237   randtbl[ 5] =  0x4e508aaa;
00238   randtbl[ 6] =  0x61048c05;
00239   randtbl[ 7] =  0xf5500617;
00240   randtbl[ 8] =  0x846b7115;
00241   randtbl[ 9] =  0x6a19892c;
00242   randtbl[10] =  0x896a97af;
00243   randtbl[11] =  0xdb48f936;
00244   randtbl[12] =  0x14898454;
00245   randtbl[13] =  0x37ffd106;
00246   randtbl[14] =  0xb58bff9c;
00247   randtbl[15] =  0x59e17104;
00248   randtbl[16] =  0xcf918a49;
00249   randtbl[17] =  0x09378c83;
00250   randtbl[18] =  0x52c7a471;
00251   randtbl[19] =  0x8d293ea9;
00252   randtbl[20] =  0x1f4fc301;
00253   randtbl[21] =  0xc3db71be;
00254   randtbl[22] =  0x39b44e1c;
00255   randtbl[23] =  0xf8a44ef9;
00256   randtbl[24] =  0x4c8b80b1;
00257   randtbl[25] =  0x19edc328;
00258   randtbl[26] =  0x87bf4bdd;
00259   randtbl[27] =  0xc9b240e5;
00260   randtbl[28] =  0xe9ee4b1b;
00261   randtbl[29] =  0x4382aee7;
00262   randtbl[30] =  0x535b6b41;
00263   randtbl[31] =  0xf3bec5da;
00264 
00265   // static long randtbl[DEG_3 + 1] =
00266   // {
00267   //   TYPE_3;
00268   //   0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
00269   //   0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
00270   //   0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
00271   //   0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
00272   //   0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
00273   //   0xf3bec5da
00274   // };
00275 
00276   //
00277   // fptr and rptr are two pointers into the state info, a front and a rear
00278   // pointer.  These two pointers are always rand_sep places aparts, as they
00279   // cycle cyclically through the state information.  (Yes, this does mean we
00280   // could get away with just one pointer, but the code for random() is more
00281   // efficient this way).  The pointers are left positioned as they would be
00282   // from the call
00283   //
00284   //  initstate(1, randtbl, 128);
00285   //
00286   // (The position of the rear pointer, rptr, is really 0 (as explained above
00287   // in the initialization of randtbl) because the state table pointer is set
00288   // to point to randtbl[1] (as explained below).
00289   //
00290 
00291   fptr = &randtbl[SEP_3 + 1];
00292   rptr = &randtbl[1];
00293 
00294   //
00295   // The following things are the pointer to the state information table, the
00296   // type of the current generator, the degree of the current polynomial being
00297   // used, and the separation between the two pointers.  Note that for efficiency
00298   // of random(), we remember the first location of the state information, not
00299   // the zeroeth.  Hence it is valid to access state[-1], which is used to
00300   // store the type of the R.N.G.  Also, we remember the last location, since
00301   // this is more efficient than indexing every time to find the address of
00302   // the last element to see if the front and rear pointers have wrapped.
00303   //
00304 
00305   state = &randtbl[1];
00306   rand_type = TYPE_3;
00307   rand_deg = DEG_3;
00308   rand_sep = SEP_3;
00309   end_ptr = &randtbl[DEG_3 + 1];
00310 
00311 }
00312 
00313 //
00314 // Compute x = (7^5 * x) mod (2^31 - 1)
00315 // without overflowing 31 bits:
00316 //      (2^31 - 1) = 127773 * (7^5) + 2836
00317 // From "Random number generators: good ones are hard to find",
00318 // Park and Miller, Communications of the ACM, vol. 31, no. 10,
00319 // October 1988, p. 1195.
00320 //
00321 
00322 __inline static long good_rand(long x)
00323 {
00324   long hi, lo;
00325 
00326   // Can't be initialized with 0, so use another value.
00327   if (x == 0) x = 123459876;
00328   hi = x / 127773;
00329   lo = x % 127773;
00330   x = 16807 * lo - 2836 * hi;
00331   if (x < 0) x += 0x7fffffff;
00332   return x;
00333 }
00334 
00335 //
00336 // srandom
00337 //
00338 // Initialize the random number generator based on the given seed.  If the
00339 // type is the trivial no-state-information type, just remember the seed.
00340 // Otherwise, initializes state[] based on the given "seed" via a linear
00341 // congruential generator.  Then, the pointers are set to known locations
00342 // that are exactly rand_sep places apart.  Lastly, it cycles the state
00343 // information a given number of times to get rid of any initial dependencies
00344 // introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
00345 // for default usage relies on values produced by this routine.
00346 
00347 void RandomGenerator::srandom(unsigned long x)
00348 {
00349   long i, lim;
00350 
00351   state[0] = x;
00352   if (rand_type == TYPE_0)
00353     lim = NSHUFF;
00354   else
00355   {
00356     for (i = 1; i < rand_deg; i++) state[i] = good_rand(state[i - 1]);
00357     fptr = &state[rand_sep];
00358     rptr = &state[0];
00359     lim = 10 * rand_deg;
00360   }
00361 
00362   initialized = 1;
00363   for (i = 0; i < lim; i++) random();
00364 }
00365 
00366 #ifdef NOT_FOR_SUPERTUX     // use in supertux doesn't require these methods,
00367 // which are not portable to as many platforms as
00368 // SDL.  The cost is that the variability of the
00369 // initial seed is reduced to only 32 bits of
00370 // randomness, seemingly enough. PAK 060420
00371 //
00372 // srandomdev
00373 //
00374 // Many programs choose the seed value in a totally predictable manner.
00375 // This often causes problems.  We seed the generator using the much more
00376 // secure random() interface.  Note that this particular seeding
00377 // procedure can generate states which are impossible to reproduce by
00378 // calling srandom() with any value, since the succeeding terms in the
00379 // state buffer are no longer derived from the LC algorithm applied to
00380 // a fixed seed.
00381 
00382 void RandomGenerator::srandomdev()
00383 {
00384   int fd, done;
00385   size_t len;
00386 
00387   if (rand_type == TYPE_0)
00388     len = sizeof state[0];
00389   else
00390     len = rand_deg * sizeof state[0];
00391 
00392   done = 0;
00393   fd = open("/dev/urandom", O_RDONLY);
00394   if (fd >= 0)
00395   {
00396     if (read(fd, state, len) == len) done = 1;
00397     close(fd);
00398   }
00399 
00400   if (!done)
00401   {
00402     struct timeval tv;
00403 
00404     gettimeofday(&tv, NULL);
00405     srandom(tv.tv_sec ^ tv.tv_usec);
00406     return;
00407   }
00408 
00409   if (rand_type != TYPE_0)
00410   {
00411     fptr = &state[rand_sep];
00412     rptr = &state[0];
00413   }
00414   initialized = 1;
00415 }
00416 
00417 //
00418 // initstate
00419 //
00420 // Initialize the state information in the given array of n bytes for future
00421 // random number generation.  Based on the number of bytes we are given, and
00422 // the break values for the different R.N.G.'s, we choose the best (largest)
00423 // one we can and set things up for it.  srandom() is then called to
00424 // initialize the state information.
00425 //
00426 // Note that on return from srandom(), we set state[-1] to be the type
00427 // multiplexed with the current value of the rear pointer; this is so
00428 // successive calls to initstate() won't lose this information and will be
00429 // able to restart with setstate().
00430 //
00431 // Note: the first thing we do is save the current state, if any, just like
00432 // setstate() so that it doesn't matter when initstate is called.
00433 //
00434 // Returns a pointer to the old state.
00435 //
00436 
00437 char * RandomGenerator::initstate(unsigned long seed, char *arg_state, long n)
00438 {
00439   char *ostate = (char *) (&state[-1]);
00440   long *long_arg_state = (long *) arg_state;
00441 
00442   if (rand_type == TYPE_0)
00443     state[-1] = rand_type;
00444   else
00445     state[-1] = MAX_TYPES * (rptr - state) + rand_type;
00446 
00447   if (n < BREAK_0) return NULL;
00448 
00449   if (n < BREAK_1)
00450   {
00451     rand_type = TYPE_0;
00452     rand_deg = DEG_0;
00453     rand_sep = SEP_0;
00454   }
00455   else if (n < BREAK_2)
00456   {
00457     rand_type = TYPE_1;
00458     rand_deg = DEG_1;
00459     rand_sep = SEP_1;
00460   }
00461   else if (n < BREAK_3)
00462   {
00463     rand_type = TYPE_2;
00464     rand_deg = DEG_2;
00465     rand_sep = SEP_2;
00466   }
00467   else if (n < BREAK_4)
00468   {
00469     rand_type = TYPE_3;
00470     rand_deg = DEG_3;
00471     rand_sep = SEP_3;
00472   }
00473   else
00474   {
00475     rand_type = TYPE_4;
00476     rand_deg = DEG_4;
00477     rand_sep = SEP_4;
00478   }
00479 
00480   state = (long *) (long_arg_state + 1); // First location
00481   end_ptr = &state[rand_deg]; // Must set end_ptr before srandom
00482   srandom(seed);
00483 
00484   if (rand_type == TYPE_0)
00485     long_arg_state[0] = rand_type;
00486   else
00487     long_arg_state[0] = MAX_TYPES * (rptr - state) + rand_type;
00488 
00489   initialized = 1;
00490   return ostate;
00491 }
00492 
00493 //
00494 // setstate
00495 //
00496 // Restore the state from the given state array.
00497 //
00498 // Note: it is important that we also remember the locations of the pointers
00499 // in the current state information, and restore the locations of the pointers
00500 // from the old state information.  This is done by multiplexing the pointer
00501 // location into the zeroeth word of the state information.
00502 //
00503 // Note that due to the order in which things are done, it is OK to call
00504 // setstate() with the same state as the current state.
00505 //
00506 // Returns a pointer to the old state information.
00507 //
00508 
00509 char * RandomGenerator::setstate(char *arg_state)
00510 {
00511   long *new_state = (long *) arg_state;
00512   long type = new_state[0] % MAX_TYPES;
00513   long rear = new_state[0] / MAX_TYPES;
00514   char *ostate = (char *) (&state[-1]);
00515 
00516   if (rand_type == TYPE_0)
00517     state[-1] = rand_type;
00518   else
00519     state[-1] = MAX_TYPES * (rptr - state) + rand_type;
00520 
00521   switch(type)
00522   {
00523     case TYPE_0:
00524     case TYPE_1:
00525     case TYPE_2:
00526     case TYPE_3:
00527     case TYPE_4:
00528       rand_type = type;
00529       rand_deg = degrees[type];
00530       rand_sep = seps[type];
00531       break;
00532   }
00533 
00534   state = (long *) (new_state + 1);
00535   if (rand_type != TYPE_0)
00536   {
00537     rptr = &state[rear];
00538     fptr = &state[(rear + rand_sep) % rand_deg];
00539   }
00540   end_ptr = &state[rand_deg];   // Set end_ptr too
00541 
00542   initialized = 1;
00543   return ostate;
00544 }
00545 #endif //NOT_FOR_SUPERTUX
00546 //
00547 // random:
00548 //
00549 // If we are using the trivial TYPE_0 R.N.G., just do the old linear
00550 // congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
00551 // the same in all the other cases due to all the global variables that have
00552 // been set up.  The basic operation is to add the number at the rear pointer
00553 // into the one at the front pointer.  Then both pointers are advanced to
00554 // the next location cyclically in the table.  The value returned is the sum
00555 // generated, reduced to 31 bits by throwing away the "least random" low bit.
00556 //
00557 // Note: the code takes advantage of the fact that both the front and
00558 // rear pointers can't wrap on the same call by not testing the rear
00559 // pointer if the front one has wrapped.
00560 //
00561 // Returns a 31-bit random number.
00562 //
00563 
00564 long RandomGenerator::random()
00565 {
00566   long i;
00567   long *f, *r;
00568   if (!initialized) {
00569     throw std::runtime_error("uninitialized RandomGenerator object");
00570   }
00571 
00572   if (rand_type == TYPE_0)
00573   {
00574     i = state[0];
00575     state[0] = i = (good_rand(i)) & 0x7fffffff;
00576   }
00577   else
00578   {
00579     f = fptr; r = rptr;
00580     *f += *r;
00581     i = (*f >> 1) & 0x7fffffff; // Chucking least random bit
00582     if (++f >= end_ptr)
00583     {
00584       f = state;
00585       ++r;
00586     }
00587     else if (++r >= end_ptr)
00588       r = state;
00589 
00590     fptr = f; rptr = r;
00591   }
00592 
00593   return i;
00594 }
00595 
00596 /* EOF */

Generated on Mon Jun 9 03:38:18 2014 for SuperTux by  doxygen 1.5.1